Initial steps in the opening of a Shaker potassium channel.
نویسندگان
چکیده
The structural model of a K(V) (K(+)-selective, voltage-gated) channel in the open state is known (Protein Data Bank ID code 2R9R). Each subunit of the channel has four negatively charged residues distributed in the transmembrane segments S1, S2, and S3 that bind to and facilitate the movement within the membrane of the positively charged, voltage-sensing residues of S4. When extrapolated to the closed state, the two outermost negatively charged residues are exposed to extracellular fluid and not bound to S4 residues, all of which have theoretically been driven inward by voltage. If this closed state model is correct, these residues are available to bind external cations. We examined the effects of La(3+) on voltage-gated Shaker K(+) channels. Addition of the trivalent cation La(3+) (50 μM) extracellularly markedly prolongs the lag that precedes channel opening and slows the subsequent rise of K(+) current (I(K)) at all voltages. Decay kinetics of I(K) at negative voltages are unaltered. Gating current (I(g)) recorded from a nonconducting mutant shows that La(3+) reduces the initial amplitude of I(g) nearly twofold. We postulate that, in the resting state, La(3+) binds to the unoccupied, outermost negative residues, hindering outward S4 motion, thus increasing the lag on activation and slowing the rise of I(K). In the activated state, La(3+) is displaced by outward movement of arginine residues in S4; La(3+), therefore, is not present to affect channel closing. The results give strong support to the closed state model of the K(V) channel and a clear explanation of the effect of multivalent cations on cellular excitability.
منابع مشابه
A Gastropod Toxin Selectively Slows Early Transitions in the Shaker K Channel's Activation Pathway
A toxin from a marine gastropod's defensive mucus, a disulfide-linked dimer of 6-bromo-2-mercaptotryptamine (BrMT), was found to inhibit voltage-gated potassium channels by a novel mechanism. Voltage-clamp experiments with Shaker K channels reveal that externally applied BrMT slows channel opening but not closing. BrMT slows K channel activation in a graded fashion: channels activate progressiv...
متن کاملHidden Markov Model Analysis of Intermediate Gating Steps Associated with the Pore Gate of Shaker Potassium Channels
Cooperativity among the four subunits helps give rise to the remarkable voltage sensitivity of Shaker potassium channels, whose open probability changes tenfold for a 5-mV change in membrane potential. The cooperativity in these channels is thought to arise from a concerted structural transition as the final step in opening the channel. Recordings of single-channel ionic currents from certain o...
متن کاملBinding of a Gating Modifier Toxin Induces Intersubunit Cooperativity Early in the Shaker K Channel's Activation Pathway
Potassium currents from voltage-gated Shaker K channels activate with a sigmoid rise. The degree of sigmoidicity in channel opening kinetics confirms that each subunit of the homotetrameric Shaker channel undergoes more than one conformational change before the channel opens. We have examined effects of two externally applied gating modifiers that reduce the sigmoidicity of channel opening. A t...
متن کاملGating of single Shaker potassium channels in Drosophila muscle and in Xenopus oocytes injected with Shaker mRNA.
The voltage-dependent gating mechanism of single A-type potassium channels coded for by the Shaker locus of Drosophila was studied by single-channel recording. A-type channels expressed in Xenopus oocytes injected with Shaker B and Shaker D mRNA exhibited gating and voltage dependence that were qualitatively similar to those of the native Shaker A-types channels from embryonic myotubes. In all ...
متن کاملFast gating in the Shaker K+ channel and the energy landscape of activation.
An early component of the gating current in Shaker K+ channels with a time constant of approximately 12 microsec has been recorded with a high-speed patch-clamp setup. This fast component was found to be part of the gating current associated with the opening and closing of the channel. With regard to an energy-landscape interpretation of protein kinetics, the voltage and temperature dependence ...
متن کاملPosition and motions of the S4 helix during opening of the Shaker potassium channel
The four voltage sensors in voltage-gated potassium (Kv) channels activate upon membrane depolarization and open the pore. The location and motion of the voltage-sensing S4 helix during the early activation steps and the final opening transition are unresolved. We studied Zn(2+) bridges between two introduced His residues in Shaker Kv channels: one in the R1 position at the outer end of the S4 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 31 شماره
صفحات -
تاریخ انتشار 2012